Pairwise Document Classification for Relevance Feedback
نویسندگان
چکیده
In this paper we present Carnegie Mellon University’s submission to the TREC 2009 Relevance Feedback Track. In this submission we take a classification approach on document pairs to using relevance feedback information. We explore using textual and non-textual document-pair features to classify unjudged documents as relevant or non-relevant, and use this prediction to re-rank a baseline document retrieval. These features include co-citation measures, URL similarities, as well as features often used in machine learning systems for document ranking such as the difference in scores assigned by the baseline retrieval system.
منابع مشابه
Document Image Retrieval Based on Keyword Spotting Using Relevance Feedback
Keyword Spotting is a well-known method in document image retrieval. In this method, Search in document images is based on query word image. In this Paper, an approach for document image retrieval based on keyword spotting has been proposed. In proposed method, a framework using relevance feedback is presented. Relevance feedback, an interactive and efficient method is used in this paper to imp...
متن کاملRRLUFF: Ranking function based on Reinforcement Learning using User Feedback and Web Document Features
Principal aim of a search engine is to provide the sorted results according to user’s requirements. To achieve this aim, it employs ranking methods to rank the web documents based on their significance and relevance to user query. The novelty of this paper is to provide user feedback-based ranking algorithm using reinforcement learning. The proposed algorithm is called RRLUFF, in which the rank...
متن کاملMedical Image Retrieval with Relevance Feedback via Pairwise Constraint Propagation
Relevance feedback is an effective tool to bridge the gap between superficial image contents and medically-relevant sense in content-based medical image retrieval. In this paper, we propose an interactive medical image search framework based on pairwise constraint propagation. The basic idea is to obtain pairwise constraints from user feedback and propagate them to the entire image set to recon...
متن کاملA Re-Ranking Method Based on Irrelevant Documents in Ad-Hoc Retrieval
In this paper, we propose a novel approach for document re-ranking, which relies on the concept of negative feedback represented by irrelevant documents. In a previous paper, a pseudo-relevance feedback method is introduced using an absorbing document d̃ which best fits the user’s need. The document d̃ is orthogonal to the majority of irrelevant documents. In this paper, this document is used to ...
متن کاملAn One Class Classification Approach to Non-relevance Feedback Document Retrieval
This paper reports a new document retrieval method using non-relevant documents. From a large data set of documents, we need to find documents that relate to human interesting in as few iterations of human testing or checking as possible. In each iteration a comparatively small batch of documents is evaluated for relating to the human interesting. The relevance feedback needs a set of relevant ...
متن کامل